

 Navigation

 	
 index

 	
 next |

 	Bartacus

Bartacus Documentation

Bartacus aims to integrate parts of the Symfony framework into the TYPO3 CMS
to gain some advantages from Symfony, like Twig rendering and a really good
DI container. Depending on your knowledge and previous experience you will
like it more than Extbase and Fluid. Bartacus uses as base the old plugin
structure for the sake of simplicity.

User Guide

	Overview
	Requirements

	Installation

	The Symfony Cache

	License

	Changelog
	0.3.9

	0.3.8

	0.3.7

	0.3.6

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	Quickstart
	Extension structure

	Accessing the container

	Services in TypoScript
	TypoScript userFunc

	Bonus: Hooks

	TYPO3 bridge and services
	Globals and makeInstace

	Other caches as service

	Translations
	Basic Configuration

	Translation files

	Content Elements
	Configuration

	Usage

	TYPO3 new content element wizard

	Ajax / Symfony Routing
	Configuration

	Usage

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Overview

Requirements

	PHP 5.4

	Symfony 2.7

Installation

The only way to install Bartacus is with Composer [http://getcomposer.org].

composer require bartacus/bartacus-bundle ^0.3

Now take a look at the
Bartacus Standard Edition [https://github.com/Bartacus/Bartacus-Standard]
to know which extra files and configuration is needed to get it running. The
most important file is typo3conf/AdditionalConfiguration.php where the main
part of Bartacus is initialised and fileadmin/app/AppKernel.php where all
Symfony bundles and extensions which are turned into bundles are loaded.

The Symfony Cache

The Symfony cache gets cleared from the TYPO3 backend on system and all cache
clear commands. If your TYPO3_CONTEXT is Development or a sub-context
of it, Symfony watches all your files for building the container and rebuilds
the container automatically. A manual cache clear is only needed if you add
new files.

In all other cases if you change anything in the Twig templates, config or
service definitions you have to clear the cache from the TYPO3 backend. While
doing this, Bartacus calls some cache warmers to, so you never start with a
complete empty cache.

License

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Changelog

0.3.9

	Add configuration of new content element wizard to plugins.yml style
configuration.

0.3.8

	Fix cache warmup

0.3.7

	TYPO3 globals are not checked anymore, before accessing them. This prevents
errors with not yet existing globals.

0.3.6

	Initialize backend user for TSFE on Symfony dispatch too

0.3.5

	Add the BE_USER global as TYPO3 bridge service

0.3.4

	Add the cache hash calculator as TYPO3 bridge service

0.3.3

	Add full symfony routing/kernel dispatch within TYPO3 eID context and TSFE
available.

	Handle redirect responses from content element actions.

	Create a bridge session storage to start session if not already started.

	Fix path to console and eID dispatch if deployed in a symlinked environment.

	Access to frozen TYPO3_CONF_VARS within Symfony container.

	Improve the typo3 bridge with predefined services and better docs.

0.3.2

	Add aliases to user obj hooks to allow references like service_id?:alias.

0.3.1

	Use locale_all from TypoScript config instead of language. Leads to
locales with countries.

	Find console command like in normal symfony bundles.

0.3.0

	Clear the Symfony cache from TYPO3 backend.

	The Plugin class is deprecated. Create Symfony controllers instead.

	Retrieve globals and makeInstance in service configurations.

	Add routing for content elements to controllers.

	Configure Symfony translator with locale from TypoScript setup.

	Add the content object as third parameter to user functions from services.

	The @BartacusBundle/Resources/config/config.yml file is removed. Take a
look at the
Bartacus Standard Edition [https://github.com/Bartacus/Bartacus-Standard]
how to fill your own config.yml.

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Quickstart

This page provides a quick introduction to Bartacus and introductory examples.
If you have not already installed Bartacus, head over to the Installation
page.

Extension structure

Below you see a basic extension structure for Bartacus with one content element.
Typical TYPO3 extension files are not shown.

typo3conf/ext/content
+-- Classes
| +-- Controller
| | +-- TextController.php
| +-- AcmeContent.php
+-- Resources
 +-- views
 +-- Text
 +-- text.html.twig

As you can see, the important class in your extension is the AcmeContent.php,
which transforms your extension into a Symfony bundle. Obviously it uses
similar naming convention as Symfony, so take a vendor name and your extension
name and camel case it together. Don’t forget to add the AcmeContent class
to your AppKernel.

<?php

namespace Acme\Extensions\Content;

use Bartacus\Bundle\BartacusBundle\Typo3\Typo3Extension;

/**
 * Transforms this extension to a "symfony bundle"
 */
class AcmeContent extends Typo3Extension
{

}

Now the content element controller:

<?php
// typo3conf/ext/acme/Classes/Controller/TextController.php

namespace Acme\Extensions\Contact\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class TextController extends Controller
{
 public function showAction($data)
 {
 return $this->render('AcmeContent:Text:text.html.twig', [
 'data' => $data,
]);
 }
}

To get the content element controller registered in the frontend, add the
following to your global plugins.yml:

fileadmin/app/config/plugins.yml

content_text:
 path: /content/text
 defaults: { _controller: AcmeContent:Text:show }

For the backend, add the TCA stuff as usual. More information about content
elements as controllers are found in the Content Elements section.

Accessing the container

The Controller class from Symfony provides some convenient methods to access
the container. Alternative the container is accessible via $this->container.

$service = $this->get('service_id');
// or
$service = $this->container->get('service_id');

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Services in TypoScript

Symfony has an excellent service container with dependency injection. But in a
while you have to configure some user function in TypoScript or some Hooks,
which are expecting the class name. This would prevent the use of proper DI.

Fortunately Bartacus integrates the service container into TYPO3 so you can
access a service in a TypoScripts userFunc or hooks.

Caution

To get the user functions in TypoScript working Bartacus XCLASSes the
ContentObjectRender in a very early phase. If you have an extension
installed which wants to XCLASS the the same class, the extension wins, and
this functionality stops working.

TypoScript userFunc

Define your class as service with the tag typo3.user_func. This will expose
all public function to be accessible in TypoScript. For more information about
the service container see the
Symfony Service Container Documentation [http://symfony.com/doc/current/book/service_container.html].

	YAMLservices:
 helper.frontend:
 class: Acme\Extensions\Content\Helper\FrontendHelper
 lazy: true
 tags:
 - { name: typo3.user_func }

	XML<services>
 <service id="helper.frontend" class="Acme\Extensions\Content\Helper\FrontendHelper" lazy="true">
 <tag name="typo3.user_func"/>
 </service>
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Acme\Extensions\Content\Helper\FrontendHelper');
$definition->setLazy(true);
$definition->addTag('typo3.user_func');
$container->setDefinition('helper.frontend', $definition);

Note

The service example above is marked as a
lazy service [http://symfony.com/doc/current/components/dependency_injection/lazy_services.html].
These is a MUST to have a correct instance injected. Otherwise your
service is created too early and you have a wrong dependencies injected.

Now you can use your service in a TypoScript userFunc and consorts:

site.config.titleTagFunction = helper.frontend->getPageTitle

site.10 = TEMPLATE
site.10 {
 template = FILE
 template.file = fileadmin/mastertemplate.html
 marks {

 LOGO = USER
 LOGO.userFunc = helper.frontend->getLogo

 COPYRIGHT= USER
 COPYRIGHT.userFunc = helper.frontend->getCopyright

 FOOTERMENU < footerMenu
 MAINMENU < mainMenu
 METAMENU < metaMenu

 SUBTEMPLATE = TEMPLATE
 SUBTEMPLATE {
 template = FILE
 template.file.preUserFunc = helper.backend_layout->getLayout
 marks {
 CONTENT0 < styles.content.get
 CONTENT1 < styles.content.get
 CONTENT1.select.where = colPos=1
 }
 }
 }
}

Normally you would get passed the calling ContentObjectRender passed into a
public property cObj. When using services for user functions you get passed
the calling content object as third parameter to the method.

Bonus: Hooks

The way the user functions are made accessible is also available for hooks,
which use callUserFunction().

// ext_localconf.php

$GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['t3lib/class.t3lib_tcemain.php']['clearCachePostProc'][] = 'hook.news->clearCachePostProc';

If the hook uses getUserObj() instead, you must add the typo.user_obj
tag to your service.

// ext_localconf.php

$GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['tslib/class.tslib_content.php']['typolinkLinkHandler']['tel'] = 'hook.link';

Note

In future iterations Bartacus will abstract the way of defining hooks.
Either with another service tag or through the Symfony event dispatcher.

If there are services which expects user objects, but are special in case of
the using syntax like custom TCA eval functions, you can add an alias to the
tag e.g. <tag name="typo3.user_obj" alias="my_alias"/> and the resulting
string for using in user obj is my_service:&my_alias.

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

TYPO3 bridge and services

The common TYPO3 classes are available in the service container for you:

The TYPO3\CMS\Core\Cache\CacheManager is available as
typo3.cache.cache_manager and the commom caches can be retrieved via
typo3.cache.cache_hash, typo3.cache.cache_pages,
typo3.cache.cache_pagesection and typo3.cache.cache_rootline.

The TSFE is available as typo3.frontend_controller, the sys_page on
the TSFE as typo3.page_repository and the cObj on the TSFE as
typo3.content_object_renderer service.

The TYPO3_DB is available as typo3.db service.

The BE_USER is available as typo3.backend_user service. This service
may be null if no backend user is logged in.

The TYPO3\CMS\Core\Resource\FileRepository for the FAL is available as
typo3.file_repository.

The TYPO3\CMS\Frontend\Page\CacheHashCalculator is available as

Globals and makeInstace

Although you have a common set of services available above, sometimes you need
access to some of the other TYPO3 globals or retrieve other TYPO3 classes with
GeneralUtility::makeInstance(). This will clutter your code and is really
bad as it makes your services not testable.

Instead you can create services from TYPO3 globals with the factory pattern:

	YAMLservices:
 app.typo3.frontend_user:
 class: TYPO3\CMS\Core\Authentication\FrontendUserAuthentication
 factory: ["@typo3", getGlobal]
 arguments:
 - FE_USER

	XML<services>
 <service id="app.typo3.frontend_user" class="TYPO3\CMS\Core\Authentication\FrontendUserAuthentication">
 <factory service="typo3" method="getGlobal"/>
 <argument>FE_USER</argument>
 </service>
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\ExpressionLanguage\Expression;

$definition = new Definition(
 'TYPO3\\CMS\\Core\\Authentication\\FrontendUserAuthentication',
 ['FE_USER']
]);
$definition->setFactory([
 new Reference('typo3'),
 'getGlobal'
]);
$container->setDefinition('app.typo3.frontend_user', $definition);

The same it possible with classes from GeneralUtility::makeInstance(), but
the must be set shared to false, so makeInstance() is still in control
whether you get the same instance or a new one every time you inject the
service.

	YAMLservices:
 app.typo3.template_service:
 class: TYPO3\CMS\Core\TypoScript\TemplateService
 shared: false
 factory: ["@typo3", makeInstance]
 arguments:
 - "TYPO3\\CMS\\Core\\TypoScript\\TemplateService"

	XML<services>
 <service id="app.typo3.template_service" class="TYPO3\CMS\Core\TypoScript\TemplateService" shared="false">
 <factory service="typo3" method="makeInstance"/>
 <argument>TYPO3\CMS\Core\TypoScript\TemplateService</argument>
 </service>
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\ExpressionLanguage\Expression;

$definition = new Definition(
 'TYPO3\\CMS\\Core\\TypoScript\\TemplateService',
 ['TYPO3\\CMS\\Core\\TypoScript\\TemplateService']
]);
$definition->setShared(false);
$definition->setFactory([
 new Reference('typo3'),
 'makeInstance'
]);
$container->setDefinition('app.typo3.template_service', $definition);

Other caches as service

If you have defined your own cache in your extension, make it available to the
service container to. It’s the same as getting a global from TYPO3, but instead
you are using the cache manager as a factory.

The configured cache in this example is acme_geocoding:

	YAMLservices:
 app.cache.acme_geocoding:
 class: TYPO3\CMS\Core\Cache\Frontend\FrontendInterface
 factory: ["@typo3.cache.cache_manager", getCache]
 arguments:
 - acme_geocoding

	XML<services>
 <service id="app.cache.acme_geocoding" class="TYPO3\CMS\Core\Cache\Frontend\FrontendInterface">
 <factory service="typo3.cache.cache_manager" method="getCache"/>
 <argument>acme_geocoding</argument>
 </service>
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\ExpressionLanguage\Expression;

$definition = new Definition(
 'TYPO3\\CMS\\Core\\Cache\\Frontend\\FrontendInterface',
 ['acme_geocoding']
]);
$definition->setFactory([
 new Reference('typo3.cache.cache_manager'),
 'getCache'
]);
$container->setDefinition('app.cache.acme_geocoding', $definition);

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Translations

String translations are possible with the wonderful
translator service [http://symfony.com/doc/current/book/translation.html]
from Symfony. The locale for the translator is retrieved from your typoscript
configuration, thus depending on the typical TYPO3 L url param.

Basic Configuration

Simple add the following to your fileadmin/app/config/config.yml if not
already exist trough the standard edition:

parameters:
 locale: en

framework:
 default_locale: "%locale%"
 translator: { fallbacks: ["%locale%"] }

This will activate the translator service and defines the default locale as
fallback locale

Caution

To get the locale retrieving from TypoScript working Bartacus XCLASSes the
TypoScriptFrontendController in a very early phase. If you have an
extension installed which wants to XCLASS the the same class, the extension
wins, and this functionality stops working.

Translation files

One restriction applies. Translations files can only be placed into real Symfony
bundles <bundle>/Resources/translations dir or under the global
fileadmin/app/Resources/translations dir. At the moment it is not possible
to place translations into a extension “bundle”.

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Bartacus

Content Elements

With Bartacus you are able to dispatch content elements to Symfony controller
actions. This creates a harmony with the future ability to dispatch routes
directly to Symfony and not to TYPO3.

Configuration

To dispatch content elements to Symfony, Bartacus makes a trick with a special
plugin routing style. To make this work you have to activate the Symfony
routing, although the routing.yml can be empty. Your content elements are
configured in the plugins.yml. Add this to your main config.yml:

fileadmin/app/config/config.yml

framework:
 router:
 resource: "%kernel.root_dir%/config/routing.yml"
 strict_requirements: ~

bartacus:
 plugins:
 resource: "%kernel.root_dir%/config/plugins.yml"
 strict_requirements: ~

An example contact form looks like the following:

fileadmin/app/config/plugins.yml

contact_form:
 path: /contact/form
 defaults: { _controller: AcmeContact:Contact:send, _cached: false }

You have to take care about the naming convention of the path part. The
first part is always the extension key and the second part the plugin name.
This naming is a MUST. Otherwise it won’t work. This would be the equivalent to
a tx_contact_form plugin class of pi_base plugins.

The _cached parameter is optional and if not given, it defaults to true.
If false, the content element is created as USER_INT and will not be cached.

You can also import the plugin configuration with the usage of a prefix, which
simplifies the path a little:

fileadmin/app/config/plugins.yml

contact:
 resource: "@AcmeContact/Resources/config/plugins.yml"
 prefix: /contact

typo3conf/ext/contact/Resources/config/plugins.yml

contact_form:
 path: /form
 defaults: { _controller: AcmeContact:Contact:send, _cached: false }

Configuration of the TCA for inserting the plugin in the backend and available
fields MUST be done in Configuration/TCA and Configuration/TCA/Overrides
as usual.

Usage

The code for the content element is simple like a Symfony controller.

<?php
// typo3conf/ext/contact/Classes/Controller/ContactController.php

namespace Acme\Extensions\Contact\Controller;

use Acme\Extensions\Contact\Form\Model\Contact;
use Acme\Extensions\Contact\Form\Type\ContactType;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class ContactController extends Controller
{
 public function sendAction(Request $request, $data)
 {
 $form = $this->createForm(new ContactType(), new Contact());

 $form->handleRequest($request);
 if ($form->isValid()) {
 /** @var Contact $contact */
 $contact = $form->getData();

 $emailTo = $this->getParameter('contact.email');
 $message = \Swift_Message::newInstance()
 ->setSubject('New message: '.$contact->getSubject())
 ->setSender($contact->getEmail())
 ->setReplyTo($contact->getEmail())
 ->setFrom(is_array($emailTo) ? $emailTo[0] : $emailTo)
 ->setTo($emailTo)
 ->setBody(
 $this->renderView(
 'AcmeContact::email.txt.twig',
 ['contact' => $contact]
),
 'text/plain'
)
 ;

 $this->get('mailer')->send($message);

 return $this->render('AcmeContact::thanks.html.twig');
 }

 return $this->render(
 'AcmeContact::show.html.twig',
 [
 'header' => $data['header'],
 'form' => $form->createView(),
]
);
 }
}

The data which is usually retrieved via $this->cObj->data in old pi_base
plugin is now injected into the $data parameter of the method if it exists.

Note

Bartacus mocks the Symfony http foundation kernel requests, which means you
have access to the Request instance as a sub request as seen above and
must return a Response instance, but none of the usual kernel events are
dispatched.

TYPO3 new content element wizard

If you want to have a content element in the new content element wizard it’s as
easy as adding some defaults to the plugin configuartion:

typo3conf/ext/contact/Resources/config/plugins.yml

contact_form:
 path: /form
 defaults:
 _controller: AcmeContact:Contact:send
 _cached: false
 _wizard:
 title: Contact form
 description: A form for the user to contact you
 icon: contact_form.png

The icon is expected to live in typo3conf/ext/contact/Resources/icons/wizard/contact_form.png
and should be 32x32 pixels big.

Organise in new tab

To put the element into your own tab/header simply add the header param to
_wizard:

typo3conf/ext/contact/Resources/config/plugins.yml

contact_form:
 path: /form
 defaults:
 _controller: AcmeContact:Contact:send
 _cached: false
 _wizard:
 header: Special forms
 title: Contact form
 description: A form for the user to contact you
 icon: contact_form.png

Restrict in rootline

Maybe element in the wizard should be only shown in given page rootline? Simply
add the rootline param:

typo3conf/ext/contact/Resources/config/plugins.yml

contact_form:
 path: /form
 defaults:
 _controller: AcmeContact:Contact:send
 _cached: false
 _wizard:
 header: Special forms
 title: Contact form
 description: A form for the user to contact you
 icon: contact_form.png
 rootline: 181

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Bartacus

Ajax / Symfony Routing

Beside content elements with Symfony you can create whole applications or
ajax request with the usual Symfony full stack framework and routing.

A full Symfony kernel dispatch is registered as TYPO3 eID script and a TSFE
object is initialized for you. So you have access to the usual TYPO3
functionality within the Symfony framework.

Configuration

To not check every request against the Symfony routes you have to configure
route prefixes which should be dispatched. Add the dispatch URIs to your main
config.yml. For example:

fileadmin/app/config/config.yml

bartacus:
 dispatch_uris:
 - /retailer/
 - /shared/
 - /filter/
 - /event/

So any /event/123 or similar URL will be dispatched by the Symfony kernel.
Any URL which matches a given dispatch URI, but the route is not found generates
a normal 404 error and is not handled back to TYPO3.

Usage

Usage is the same as routing in a full stack Symfony application.
Read the docs of the Symfony routing [http://symfony.com/doc/current/book/routing.html]
to get familiar with it.

One thing you have to take care of: If not passed the TSFE sys_language_uid
is 0 and therefore the locale of the translator. You need to pass the L
parameter explicetely to the route by either adding the ?L=1 query parameter
as usual or by encoding it in the route itself:

typo3conf/ext/event/Resources/config/routing.yml

event_show:
 path: /event/{L}/{id}
 defaults: { _controller: AcmeEvent:Event:show, _format: json }
 requirements:
 _format: json

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Bartacus

Index

 Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		
 index

 		Bartacus »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 - 2016, Patrik Karisch, pixelart GmbH.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/down-pressed.png

_static/comment.png

